Spectral Signatures & Land Cover Composites Philadelphia to Glassboro, 2009-05-21

Land cover Type	True Color B G R 1 2 3	False IR G R NIR 2 3 4	False SWIR R NIR SWIR 3 4 7
Water (Delaware River)	black	black	black
Forest (Glassboro WMA)	dark green	dark red	green
Grass (Tavistock CC)	green	red	lime green
Soil (Pennsauken Iandfill)	medium brown	light blue	purple
Urban (Center City Philly)	grey	light blue	purple
Your choice (agriculture plot)	beige	light blue-green	pink

Spectral Signatures of Philly to Glassboro Region

Explanation: Among the five targets sampled in the Philly-Glassboro region, in Band 1 there appears to be two groups that do not show much separation: water, forest and grass landcovers being close together; and in the other group soil, urban, and agriculture land covers are close together. There is also a similar pattern of two groupings in Band 2. Starting at Band 3 and beyond the bands start to become more separable and distinct patterns form. Regarding Bands 3,4,5,7 the water landcover is an obvious outlier and does not share a similar spectral pattern with any other landcover types. Forest and grass do appear to share a similar pattern with all the bands. Soil and urban landcover also follow a similar path.

Gina DiMaio, 10 February 2022, Remote Sensing of the Environment